

The Programming Languages

● FORTRAN IV - IBM Mainframe
● BASIC - IBM Mainframe and Z80 PC
● C (not C++) - Z80 PC
● Perl - Linux
● Python - Linux/Windows
● Others including Pascal, LISP, 360 Assmebler,

Z80 Assembler, PL/1, SNOBOL and several
others I have conveniently forgotten.

"Hello World!"

● Adopted as the introduction to the simplest
programs in most modern languages.

● Started with "C" in The C Programming
Language.

● Can of course be programmed in ANY
language.

"Hello World!" in FORTRAN IV
On punched cards:

//C0122689 JOB (0,0,,,,,1,,0),
// MA105092.B.M.FERRY,MSGLEVEL=1
//A EXEC FORTGCLG
//FORT.SYSIN DD *
 WRITE(6,10)
10 FORMAT('HELLO WORLD!')
 STOP
 END
/*
//GO.FT06F001 DD SYSOUT=A

"Hello World!" in BASIC

10 PRINT "Hello World!"

"Hello World!" in C

The official version from: The C Programming
Language

main()
 {
 printf("hello, world");
 }

"Hello World!" in Perl

Perl is a staple of Linux. I learned it from
experimentation and a couple of books. It was
the first language I used to interact with
MySQL.

print "Hello World!";

"Hello World!" in Python

Python is my latest new language. I wish I had
pursued it sooner.

print "Hello World!"

A More Complex Example
● In C:

#include <stdio.h>
main () {
static int i;
for (i=1; i<11; ++i) {
 printf("%d\n",i);
 }
}

● In Perl:

for ($i=0; $i<11; ++$i) {
 printf("%d\n",$i);
 }

● In Python:

for i in range(1,11) :
 print "%d" % i # "print i" would also work

Python Features

● Interpreted/compiled
● Variables need not be pre-defined and don't

have an extra character to denote them like
Perl's '$' sign.

● All of the usual programming constructs are
there but are implemented differently
sometimes.

● No silly braces {} or semicolons needed.
Blocks are denoted by indenting.

● Comments are easy with a '#' symbol.

Python Features - 2

● Programs tend to be shorter than Perl.
● Variable types are automatic based on content.
● Linear arrays work in natural ways. For example:

'for a in b :' where 'b' is an array executes the block
using each value in array 'b' assigned to variable
'a'. Array 'b' could also be an array of arrays.

● Dictionaries, similar to Perl hashes, work pretty
much like arrays but need to be defined so Python
knows what you're up to.

Python Features - 3

● To nest deeper blocks just use more indenting.
● There are no particular limits on any program

structure. A number, string or array can be as
big as you need it to be.

● Python programs can be pre-compiled to
make execution faster.

● File reading and writing as well as a wealth of
built in functions are handy and well
documented.

Python Features 4

● The substring function is such a popular thing to do that
it is extra easy: a[2:3] means substr(a,2,3). a[4:] means
substr(a,4). a[-4:] means the last 4 characters.

● Concatenating strings is easy – just add them: c = a + b.
Or you can use something like: a += b.

● To add an element to an array just add it: a[] += [b]
● Splitting as string ('c') is easy too: c.split(',') returns an

array of strings.
● Lots of other functions, almost anything you can think of.

Python Unique Things

● When you create a variable the LOCATION of the value is stored in the variable
descriptor. EVERY Python element POINTS to that element value somewhere.

● Like values can be shared. READ THE BOOK to make sure you understand
this. REALLY odd things can happen if you don't.

● Arrays like [1,2,3] are different from tuples like (1,2,3). Tuples cannot be
changed but arrays can. Tuples elements are protected and cannot be
changed. You can concatenate two tuples together though.

● Odd structures are easy. Things like a dictionary of arrays:

a = {} # 'define' variable 'a' as a dictionary
a['The'] = ['quick','brown']
a['The'] += ['fox','jumped','over']
print a
{'The': ['quick', 'brown', 'fox', 'jumped', 'over']}

● There are other really unique things that I haven't dug into yet.

Python Code Examples

● I have found out that a lot of code examples
exist out there. Google can find them.

● One of the early programs I wrote needed a
way to parse ADIF format files. This is not the
easiest file format to break down in any other
language but in Python it was simple. I found
the code I needed at the top of my first Google
search: 'python ADIF'

Python Versions and Extras

● Know what version of Python you are using. Some
things are different between versions! Most significant
is the change of 'print' from a statement to a function in
version 3.

● If you install it on Windows pick the same version you
are using on Linux.

● Expect to add extra packages to support things like
MySQL. Once installed they're easy to use. They
usually install as RPMs (or the usual Windows install
things).

A Problem for Python

I have a file, shown below, that I want to categorize. It's a file of
"Field Notes" from a recent Geocaching day and I want to know
how many I found and how many I didn't find. Here's what the file
looks like:

GC44PGQ,2013-09-18T12:21Z,Found it,""
GC3G4NV,2013-09-18T13:06Z,Didn't find it,""
GC4AEB0,2013-09-18T13:07Z,Found it,""
GC44GYF,2013-09-18T13:20Z,Found it,""
GC49G8K,2013-09-18T14:08Z,Didn't find it,""
GC3XQBM,2013-09-18T14:08Z,Found it,""

There are more lines but you get the idea. It's four fields separated
by commas. I only care about summarizing what's in the third field.

The Python Program

gv = open('geocaching_visits.txt') # Open the file
tally = {} # Create 'Dictionary' (like Perl hash)
for a in gv : # Read each line in the file into 'a'

b = a.split(',') # Split 'a' into an array 'b' at commas
if b[2] not in tally : # If the key isn't in 'tally' add it
 tally[b[2]] = 0 # Count to zero
tally[b[2]] += 1 # add one to the count

tkeys = tally.keys() # extract the keys
for k in tkeys : # loop through the keys

print "%-20s %d" % (k, tally[k]) # print it

The Python Program
Condensed Version

tally = {}
for a in open('geocaching_visits.txt') :

b = a.split(',')
if b[2] not in tally : tally[b[2]] = 0
tally[b[2]] += 1

for k in tally.keys() : print "%-20s %d" % (k, tally[k])

OR:

tally = {}
for a in open('geocaching_visits.txt') :

b = a.split(',')[2]
if b not in tally : tally[b] = 0

 tally[b] += 1
for k in tally.keys() : print "%-20s %d" % (k, tally[k])

The Output

Didn't find it 7
Found it 38

Why I Like Python over Perl

● Python is so different from everything else I don't mix up how to
do things as I do in Perl. Perl is ALMOST like C but just enough
different to be annoying.

● Python does complex things with much less fuss than Perl. It's
easier to handle arrays both linear and dictionaries.

● The online documentation for Perl is less than useful. It's great
if you know what you need and are just looking for details. If
you're stumbling around trying to find out HOW to do
something it falls short. Python is much better.

● Python, like Perl, is cross platform. I use it under both Windows
and Linux. There are some differences but nothing major.

How to Learn Python

● Get the O'Reilly book. It takes you
through the various aspects of the
language in a very logical way. It
does assume you know something
about programming.

● There are several online resources
also available.

● DO NOT try to just learn Python by
trial and error. Python is just too
different. That's where I went wrong
when I first tried to learn Python. It
took me years to give it another try.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

